Abstract — The aim of the study was to study the effect of individually formed vitamin and mineral complex is containing iron on the metabolism of this trace element. Methods: we examined healthy persons (n=314), is randomizing into 2 groups. The main group (n=116) received a vitamin and mineral complex with the necessary amount of iron (the dose was calculated based on the results of the initial laboratory examination of the patient) during 30 days, and the comparison group (n=198) got a similar complex without iron-containing component. Prior to administration of the complex and immediately upon completion of the full course, the total iron concentration in the blood, serum iron level and ferritin content in the blood were determined. Results: the randomized controlled one-center study confirmed the positive effect of the course of personalized correction of iron metabolism on a number of its biochemical indicators (total iron level in the blood, serum concentration of this trace element and the amount of ferritin).
Keywords — iron, blood level, personalized correction.
Iron deficiency is one of the most common problems of the population of large cities [1, 2, 5]. Numerous epidemiological studies indicate, on the one hand,a sufficiently high frequency of iron deficiency anemiaand associated pathological conditions [1–3] and, onthe other hand, indicate a significant proportion ofpersons with subclinical manifestations of metabolicdisorders of this trace element [6]. Thus, according tothe results of our previous studies, up to 27% of theadult population of the metropolis have either fullfledged or subclinical (at the level of the lower quartile)serum iron deficiency [4]. These facts clearly indicatethe feasibility of targeted detection and personalizedcorrection of iron deficiency. In this regard, the aim ofthe work was to study the effect of individually formedvitamin and mineral complex is containing iron on themetabolism of this trace element.
The study was designed as an open prospective, randomized controlled trial. It included 314 people belonging to the category of practically healthy people. The inclusion criteria were the age from 20 to 50 years, the absence of acute or chronic in the acute stage of pathology, as well as the presence of subclinical or clinical serum iron deficiency. All participants in the study signed informed consent prior to the initial survey. Further, the examined persons were randomized into 2 groups: the main group (n=116), representatives of which received a vitamin and mineral complex containing the necessary amount of iron (the dose was calculated based on the results of the initial laboratory examination of the patient), and the comparison group (n=198), which received a similar complex, the only difference of which was the absence of an iron-containing component. The duration of reception of the complex was 30 days. Prior to administration of the complex and immediately upon completion of the full course, the total iron concentration in the blood (in µg/l), serum iron level (in µmol/l) and ferritin content in the blood (in µg/l) were determined. All these parameters were evaluated by standard methods. The data were processed in the software package Statistica 6.1.
It was found that the majority of the studied parameters in the second control point of observation did not change relative to the first one (Fig. 1–3). Thus, the total concentration of iron in the blood and its serum level remained at the initial values (Fig. 1 and 2), while the amount of the main iron-transport protein of the blood — ferritin — even showed a downward trend (-2.6%; p<0.1). On the contrary, the personalized correction of the metabolism of the microelement under consideration contributed to the increase of all the studied parameters (Fig. 1–3). In particular, there was an increase in the total concentration of iron in the blood by 13.4% compared with the baseline (p<0.05), exceeding the value characteristic of the comparison group by 10.0% (p<0.05). A similar dynamics was recorded for serum iron level (an increase of 16.8% relative to baseline values and 8.3% — to the comparison group (p<0.05 for both cases))
The changes in ferritin levels were significant too (Fig. 3). It was found that the concentration of this iron transport protein in the representatives of the main group increased by 5.1% compared to the first control point and by 7.7% - relative to the comparison group (p<0.05 for both cases)
Thus, the randomized controlled one-center study confirmed the positive effect of the course of personalized correction of iron metabolism on a number of its biochemical indicators (total iron level in the blood, serum concentration of this trace element and the amount of ferritin).
Complete our health Quiz or go a step further to include a blood test. This information allows us to create a supplement formula more personalized than anything else available. One unique formula, once a day, fulfills your body’s daily foundational nutrition requirements.
Your own 100% personalized daily supplement formula made up of patented Swiss granules for maximum absorption. It’s easy to get going.
Start the QuizEngineered for those who demand the highest level of performance. Your 100% personalized supplement formula is custom-built based on your blood markers and comes with 1:1 nutritionist support.
Learn More